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Synopsis.
An attempt is made to generalize the Hilbert space of quantum mechanics 

in analogy with the development of the general relativity theory from the 
theory of special relativity. The state vectors, ip, ïp, of quantum mechanics are 
found to be analogous to the four-velocity, v^, of relativity and therefore co
ordinates, /, are introduced, corresponding to the coordinates xil of a par
ticle, such that the time derivatives of / and / equal ip and ÿ. The metric p, 
used in constructing the probability density, is supposed to be a function of / 
and /. The unitary transformations of the usual theory are replaced by quite 
general transformations y and /. A tensor calculus for this generalized Hilbert 
space is developed and equations of motion for the states and the dynamical 
variables are postulated as generalizations of the usual Heisenberg equations when 
the ordinary time differentiation is replaced by invariant time differentiation. 
In this way a non-linear theory is obtained. However, the expectation values 
of the dynamical variables are found to be the same in the new theory as 
in the old, showing that this theory cannot give any physical results different 
from those of the usual theory.

Printed in Denmark 
Bianco Lunos Bogtrykkeri A-S



1. Introduction.

he present-day quantum mechanics has been successful in
1 explaining a large number of phenomena, particularly those 

involving electrons and electromagnetic radiation. It has, however, 
not been so successful in dealing with other particles. The dis
covery of several new particles in recent years seems to indicate 
that the basis of the present theory ought to be broadened. In an 
ideal theory, one should be able to describe the various particles 
as possible states of one system. It is probable that this can be 
achieved by constructing a non-linear theory in which the prin
ciple of superposition of states is valid only as a first approxima
tion.

Some attempts in this direction have recently been made, 
notably by Schiff (1951 a, b, 1952), by Thirring (1952), by 
Heisenberg (1953,1954) and by Heisenberg, Kortel and Mitter 
(1955), who introduced non-linear terms into the wave equations. 
The addition of such terms is, however, an entirely arbitrary 
procedure and therefore unsatisfactory. These attempts can there
fore be considered only as phenomenological until they have 
some acceptable principles as their basis.

A well-known example of a non-linear theory in classical phy
sics is the theory of general relativity. The special relativity theory 
allows only linear transformations of the coordinates; the general 
theory abandons this restriction and takes quite general coordi
nate transformations into account. This leads in a fairly natural 
way to the explanation of the gravitational phenomena. But gra
vitation plays only a very minor role in atomic and nuclear phe
nomena and therefore the theory of general relativity in itself is 
not of much interest to the atomic physicist. However, one can

1*
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still learn a great deal from it. Its methods may, for instance, be 
applied to the construction of a more general Hilbert space in 
which the unitary transformations of the usual theory can be 
abandoned in favour of more general transformations. This paper 
deals with exploring this possibility. It is shown here that such a 
generalization is possible and leads, as expected, to non-linear 
wave equations in quantum mechanics.

The development outlined below is similar to that of the ge
neral relativity theory. However, it is hoped that this paper can 
be understood, at least in its main line of arguments, without pre
vious familiarity with general relativity or Ricmannian geometry.

2. Analogy between Relativity Theory 
and Quantum Mechanics.

We here start by discussing a Hilbert space of finite dimen
sions, A7. A system in quantum mechanics is completely spe
cified when the components, ipm, of its state vector are known in 
all the N mutually orthogonal directions in Hilbert space. The 
state ip is usually normalized to unity, which means that

v
= 1 . (2.1 )

m= 1

Here ipm is the complex conjugate of ipm. One could, if one 
wished, choose a different normalization for ip, but normalization 
to unity is most convenient. The unitary transformations are 
such that they leave (2.1) invariant. Indicating the transformed 
variables by primes, we have

= ^ÿmipm = 1. (2.2)
m vi

If we define
W = V™ (2.3)

we can write (2.1) as
^ipmVm = 1. (2.4)

771

Let us denote a general dynamical variable by A with com
ponents A— n. When ip goes over to ip' by means of a unitary 



Nr. 21

transformation, A goes over to A' such that the expression 
remains invariant:

m, n
2 Vn' A'Sn V«' = Sv’n-^nVn- (2.5)

m, n m, n

The reason why we have put a bar over m in A—n is that this 
suffix is contracted with ipm while the other suffix, n, which is 
without a bar, is contracted with ipn.

With the help of the above notation for the components of a 
dynamical variable, we can write (2.3) as

y’m = (2-6)
n

where is the unit matrix.
In special relativity we meet an analogous situation. If de- 

dx^
notes the four-velocity, ---- , of a particle (t is the proper time,
c = 1), we have

^=1. (2.7)

Here the covariant components, v^, are related to the contrava
riant vector n" by means of the metric gv/Jz

where

If one expressed as functions of some other parameter s, one 
would get another factor instead of 1 on the right-hand side of 
(2.7). However, it is most convenient to have the normalization 
1 by choosing the independent variable as r.

We now’ notice a formal similarity between the equations (2.4) 
and (2.6) of the quantum theory, on the one hand, and the equa
tions (2.7) and (2.8) of relativity, on the other. The analogue of 
the equation (2.5) in relativity would merely specify the trans
formation properties of a second rank tensor.
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Because of this formal similarity between the relativity and 
the quantum theories, we can say that the quantum state y with 
components corresponds to the relativistic velocity p with 
components v^.

3. Coordinates in Hilbert Space and Generalization of

The fact that ipm corresponds to the velocity v,L suggests that 
we introduce coordinates such that, by definition,

(3.1)

This relation is analogous to the definition

The 2™’s do not form a vector, just as x/l does not constitute a 
vector in relativity. The upper position of the index in in %m is 
inserted only for convenience and does not imply that it is a 
vector.

From (2.4) and (3.1) it follows that

d%wtZ%w = cft2, (3.2)

where, according to (2.6),

d%m = £ dXn Vnm- (3.3)
n

(3.2) can also be written as

2? Vmn dXm dXn = dt'2
m, n

(3.4)

which is analogous to the relativity relation

y guv clx/l dxv = dr2, 
fl, V

In special relativity the p^/s are constants given by (2.9). 
The transition from this theory to the theory of general relativity 
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consists in abandoning the constancy of and allowing them 
to be functions of the coordinates xf/. In view of the formal si
milarity between the equations (3.4) and (3.5), it now suggests 
itself that in quantum theory we regard as functions of 
Z and

Vmn Vmn Cz> z)- 0-6)

4. Definitions of Vectors and Tensors.

We now assume that quite general transformations of / and 
/ are possible such that the transformed coordinates %m' de
pend on x1, x2, x3, %N and similarly xm' depend on 
>yl /y2 /y3 /yN •

m = 1 . . . N.

(4.1)

Note that xm' does not depend on /r, nor does xm' depend on /r. 
From (4.1) it follows that

and

(4.2 a)

(4.2 b)

We now follow the usual convention that, unless otherwise stated, 
when a suffix occurs once below and once above, summation 
over it will be understood.

We define a ‘contravariant vector’ as one whose components 
transform like dxm and a ‘conjugate contravariant vector’ as one 
whose components transform as d^m. Sometimes, we distinguish 
vectors of the kind dxm by calling them ‘ordinary’ as contrasted 
with conjugate vectors. Thus, an ordinary contravariant vector, 
Am, transforms as

dr™'
___ j\n

Qyn
(4.3 a)
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and a conjugate contravariant vector, Am, as

_ dvm' -Am' = -t- An. (4.3 b)

We put a bar over the suffix which transforms as a conjugate 
vector, while the suffixes which transform as ordinary vectors 
will be left unbarred.

From (4.2 a, b) and (3.1) it foil ows that ip is an ordinary and 
ÿ a conjugate contravariant vector.

Besides contravariant vectors, we also have covariant vectors. 
An ordinary covariant vector, Am, is defined to transform as

(4.4 a)

The conjugate covariant vectors transform as

(4.4 b)

These definitions are arranged so that, by contracting the indices 
of a covariant vector and a contravariant vector of the same kind, 
we get an invariant result:

A'm Bm' = Am Bm (4.5 a)

(4.5 b)

Tensors of higher ranks can be defined in exactly the same 
way as in the ordinary tensor analysis. Thus, a second rank 
tensor Amn transforms as 

Am '
n

d%m' d%b 
d%a dxn'

and a tensor Amn transforms as

A" 4«
9/« d/»' 6

(4.6 a)

etc.
(4.6 b)
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From (3.4) and (4.2 a, b), it is clear that, if we have

dmn
d%a dxb

dyn' (4.7)

the expression (3.4) will be invariant. We can say that is a 
covariant tensor of the mixed kind. It is easy to see that A—n in 
(2.5) is also a covariant tensor, of the mixed kind.

Besides being a tensor, the equation (3.4) shows that is a 
Hermitian matrix, i. e.,

Vmn ^Inm • (4.8)

5. Covariant Differentiation.

If (p is a scalar, i. e., if
<P = <P>

it follows that
d(p' dtp d%a 

d%™' ~ d%™' ’ (5.1)

Comparing (5.1) with (4.4 a) we see that the gradient,

covariant vector, 
covariant vector.

Similarly one can see that „ is a 
dX

conjugate

Örn

Let us now consider the 
on using (4.3 a),

gradient of a vector Am. We have,

dAm' d T dym'--------= -------- y/
dxn> d%n' ^Xa

d%b_ d 
d%n' d%b

(5.2)

d%m' d%b d Aa 
d%a d%n> d%b

d%b d2%m' 
d%n' d%b d%a

dAmComparing (5.2) with (4.6 a) we see that------ would have been a
fz”

tensor if the last term in (5.2) were absent. Because of its pre-
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dAm .
sence,----- is no longer a tensor.

therefore introduce an ‘affinity’ I™

As in general relativity,

such that, by definition,

we

(5-3)

is a tensor. We call A™n the covariant derivative of Am and 
denote it by a semi-colon. It is evident that /’^cannot be a tensor. 
We shall find its transformation properties presently.

Since is by definition a tensor, we have, on using (4.6 a),

dv™’ dvb

When we substitute the 
in terms of Ar by using

r„, = V' W dX‘ r„ , ar- 
d%a d%n> d%r' bc d%a d%n' d%r'

n d%a d%n' ’b'

definition (5.3) of A™n and express Am> 
(4.3 a), we get

This is precisely the transformation law for F™r in general rela
tivity. Note that, because of the second term in the right-hand 
side of (5.4), r™r is not a tensor.

It is easy to sec that, since the last term in (5.4) is symmetric 
in n and r, F™r will remain symmetric in all coordinate frames 
if it is chosen symmetric in one. This, of course, does not proue 
that is symmetric. In this paper we shall take it to be sym
metric for the sake of simplicity.

We have seen that the gradient of a scalar is a vector. We 
can therefore say that the covariant derivative of a scalar is the 
same as the ordinary derivative

d(p
(5.5)

Assume now that the usual product rule for differentiation 
holds also for covariant differentiation
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(/V>;n = f-, n 9 + f 9-, n

so that, in particular,

Since Am Bm is a scalar, we get from (5.5)

(Am B )V x m-' ; n
dAm dBm
 Bm + Am ------- . 
d%n---------------d%n

(5.6)

(5.7)

When we substitute this and (5.3) in (5.7), we find that

4
m; n (5.8)'

This provides the ride for differentiation of covariant vectors.

The rules for differentiating conjugate vectors with regard to
%n are similar. One has there to use an affinity which is the com-
plex conjugate of r™r.

dA™
(5.9)Bm~ = ------

’n
4- 4« rm_

1 an

dB~
Q-n b m n ’ (5.10)

where
rm __
1 r n

rm
1 rn • (5.11)

So far the discussion has been quite analogous to that of the 
usual tensor analysis. Let us now consider the differential coef
ficient of a conjugate vector with respect to We have

dAm' d W1' <S1- u
d%n'

dXb d ■d%w'
d%n' d%b dxa

d%b d%mf dAa 
d%n> d%a d%b
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In getting the last step we have made use of the fact, stated in 
the equation (4.1), that does not depend on so that

d
(5.13)

From (5.12)
dAm .

we sec that------is a tensor and thus there is no
d%n

need of introducing any affinity here. Alternatively, we can say 
that the covariant derivative of Am with respect to %n is the same
as the ordinary derivative

dAm
d%n '

(5.14)

We summarize here the rules for covariant differentiation:

The differentiation rules for tensors can be obtained from 
(5.15) and (5.6). A tensor like Amn transforms like the product 
of two vectors Bm and Cn. Therefore its differentiation law ought 
to be the same as for the product BmCn. This gives
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(5.1C>)

The rules for differentiating with regard to are quite similar. 
One can easily write down the differentiation rules for tensors of 
higher ranks.

6. Lowering and Raising of Suffixes; Relation between 
the Affinity and the Metric.

We use the metric to lower the indices of tensors in the 
following way:

= (6.1a)
and

(6.1 b)

From (6.1 a) it follows that

(6.2)

We now assume that

r!mn ; i' 6 • (6.3)
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As one can see from (6.2), this enables us to perform the opera
tion of lowering the suffixes inside the differentiation sign, viz.,

A = A™ 77-n; r ; r Imn

From (5.16) it follows that the equation (6.3) means

(6-4)

Let us now introduce the inverse of We denote it by tjmn :

(6.5 a)

(6.5 b)

where I is the unit matrix so that I™ equals 1 if in = n and is 
zero otherwise. One can easily establish the tensor character of 
T/mn and of I™'. The matrix )fnn can be used to raise the suffixes 
of covariant vectors and tensors in a way analogous to (6.1 a, b).

If we multiply (6.4) by r/sm, we get

or

(6.6)

We have thus expressed the affinity in terms of the fundamental 
metric Note that the right-hand side of (6.6) is not, in gen
eral, symmetric in n and r. If we want rsnr to be symmetric, 
we must impose some restrictions on the metric; namely, the me
tric has to satisfy

drj'rnn ^^Imr /n n \
 = ------- . (6. / a) 
d%r------ Q?n

By taking the complex conjugate of (6.7 a) and using the fact 
that is a Hermitian matrix [see (4.8)], we also get

^Inm _  ^llrm
d%r ~ d%n ‘

(6.7 b)
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The equations (6.7 a, b) show that we can write

(6-8)

where (p is a real local scalar.

Taking the complex conjugate of (6.6) and using (5.11) and 
(4.8), we find

(6-9)

7. Curvature Tensor.

The expression (6.6) looks very different from the usual ex
pression for affinity in relativity theory. However, it will be 
shown that, by using a suitable notation, we can put it in a 
form similar to that in relativity theory.

Let us define

In general, let us write Nni instead of m wherever the latter 
occurs. Thus, in our new notation,

and
+ m

rlmn ViN + m'fn'

We also define
—when p>N,v< N

0 in all other cases

(7-2)

(7-3)

where, in this section, the Greek indices take the values 1,2.. .2 N. 
The invariant line element (3.4) becomes

X d^1 V d%V = dt*
/n, v

(7.4)

which is similar to the expression (3.5) of the relativity theory. 
One can easily verify that the expressions (6.6) and (6.9) for the 
affinity can now be written together as
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(7.5)

usual expression inthe spaee. Thereal

(7.6)

(7.5)

(7.7)

and un-

(7.8)

(7.9)a%5

theory1.

1
9

If we write (7.7) in our previous notation, using barred 
barred suffixes, we lind

DlJ VO

drmnr

to
here defined as

The complex conjugates of (7.8) and (7.9) also hold.
Thus Bmnrg is essentially the curvature tensor in this

(tv — v) wpen M < 2V, v > N

0 in all other cases.

As in the tensor analysis of real space, the expression 
gives rise to the curvature tensor

= 0, b^Fs = 0,

jOl _ ___ _ JQl VO

VQa

8. Condition for Flat Space.

One can easily show that the affinity can be made zero at 
any one given point, say at the origin, by a suitable choice of the 
coordinate system. In fact, not only the affinity r™r, but also its

1 I am thankful to Professor C. Møller for first pointing this out to me. The 
expression (7.9) can also be found directly from the previous formalism (without 
introducing the notations (7.1)-(7.3)) by extending the idea of parallel displace
ments to the complex space. (Private communication).

See appendix for the contracted forms of the curvature tensor.
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gradient
dTm
—— can be made to vanish at any one point. This can 
d%s

be explicitly verified by carrying out the transformation

(8.1)

where
(8.2 a)

and

o

Bm rnrs

anr wr/O

dysÄ -Io

Note that, due to the relation (6.7 a), the right-hand side in 
(8.2 b) is symmetric in n, r and s, as it should be because (8.1) 
shows that Bmnrs is symmetric in these suffixes.

However, the affinity and its gradient vanish at one point only; 
they do not vanish even at a neighbouring point unless the cur
vature tensor (7.9) vanishes. To see this, we have merely Io ex
pand r™r in a Taylor series about the origin:

(8.3)

r r 1

dXs d%s
+ • • •

0

|o d%s k . . .

Hence, it is a necessary condition for the vanishing of the affinity 
that the curvature tensor must vanish :

(8.4)

As the form (7.7) closely resembles the expression for the curva
ture tensor in real space, it is not difficult to see that (8.4) is also 
a sufficient condition for the vanishing of the affinity in some 
coordinate system.

From (6.6) and (6.9) we see that, if the affinity vanishes, 
are constants independent of /, In other words, the space is 
then Hat and we can take, by correspondence with the usual 
quantum theory,

Mat.Fys.Medd.Dan.Vid.Selsk. 30, no.21. 9
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Vmn ^mn<

where I is the unit matrix, i. e.,

1 if m = n 
^mn '

O if m n.

(8.5)

(8.6)

From the above discussion it follows that, if our theory is to 
be essentially different from the usual quantum theory, we must 
have a curvature tensor which is not zero.

9. Equations of Motion.

In general relativity theory, the equations of motion of a par
ticle in a gravitational field can be obtained by the variation of
the Lagrangian

dx/l dxv 1/a
9/lv dr dr dr

with respect to ^(r). We assume that we can obtain the equa
tions of motion for %(/) in our quantum theory by a similar va
riational principle. As the Lagrangian we take

L = rlmn (X » Z)
d%m d%n

dt dt

(9.1)

and make in and % independent variations that vanish at the 
end points to and ti.

In this way we easily obtain

and

Dw™
= 0

dt
(9.2 a)

(9.2 b)
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d%r dipm d%r 
dt d%r dt

[ see (5.15) ]

(9.3 a)

and similarly

(9.3 b)

The equations (9.2 a, b) now replace the equations

and

dcpm
dt

(9.4 a)

(9.4 b)

of the usual quantum theory in the Heisenberg representation. 
[To denote the states of the usual theory we have here used 
cpm, <?m to distinguish them from y, ÿ» of the present work.]

Besides (9.4 a, b), we have also equations for the dynamical 
variables, Ft

0-5)

where the square bracket stands for the commutator. We replace 
these equations by the covariant ones

2*
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Here

öZr
pa

il
pm pm

ar a

'Ixr + ffFy
dl d%r

(i%r 
dl

[see (5.1 6)1 (9.7)

It will be shown below that the Hamiltonian H of the new theory 
is, in genera], different from the Hamiltonian H of the old theory. 
This is the reason why the two Hamiltonians have been written 
in different ways in (9.5) and (9.6).

It may be remarked that, when the spaee is flat so that the 
affinity vanishes, the equations (9.2 a, b) and (9.6) of the new 
theory reduce to the equations (9.4 a, b) and (9.5) of the old 
theory.

10. Relation between the Old and the New Hamiltonians.

If we replace F by H in (9.6), we get

or

or

(10.1)

[see (9.7)]
(10.2)

fl’“„(0=tf"„(0) + $‘H“(,r«r-/™H»B)r<«- (10.3)

Let us understand by 0 the instant at which the geodesic coordi
nates are introduced such that

(o) - o, (10.4)

[see section 8]. At this instant the equations (9.6) and (9.2 a, b) 
of our theory go over into the equations (9.5) and (9.4 a, b) of 
the old theory. We can therefore put
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(0) - H'\, (10.5)

where Hmn is the old Hamiltonian. Then (10.3) becomes

H“‘n = «“»+$' («“a Vr <"• UO.ß)

This shows that, as the affinity does not vanish everywhere on 
the track, the Hamiltonian H is, in general, different from the 
Hamiltonian H.

11. Expectation Values and Equivalence of the Old and 
the New Theories.

The expectation value of an observable F in this theory is 
given by

<F> = ym Fmnyn. (11.1)

We shall now show that this is the same as the expectation value

— (pm Fmn^Pn , (11.2)

where cpm denotes the states of the usual theory [cf. (9.4 a, b),
(9.5)1  and the suffix ‘u’ denotes the ‘usual’ theory to distinguish 
(11.2) from (11.1). To show this, we first remark that, in general, 
the expectation values (11 1) and (11.2) depend on time. At the 
instant 0 at which we introduce the geodesic coordinates [cf. sec
tions 9 and 10], we can take both of them to be equal:

<F>(0) = <F>«(0). (11.3)

To get the expectation value at any later instant /, we make the
Taylor expansion

<F>(/)
d<F>

F> (0)

(11.4)

0
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N ow

d<F> 
dT

D<F>
dt

[because <F> is a scalar]

— V’w using (9.2 a, b)]

= [H, F]mn y)n [using (9.6)].

At the instant 0, all the variables of the new theory go over into 
those of the old theory, giving

d<F>' i
— — (fm li

[H, F] mn tyn ,

Similarly, one can easily see on using (9.2 a, b), (9.6), and (10.1), 
that 

where
[H.F]'”’ = [H, [H.......[H.F]]...].

----------------- +V terms 

Thus (11.4) becomes

<P>U)

(11-5)

(11.6)

(11.7)

This, however, is precisely the expression that one would obtain 
also from (11.2). Hence

F> (/) = < F>m(Q.

Thus, the expectation values of all dynamical variables will be 
the same in the new theory as in the old1. Note that this result 
does not depend on the curvature tensor.

1 I am thankful to Professor C. Møller for pointing out in a letter to me 
this equivalence of the old and the new theories.
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12. Conclusion and Outlook.

We have tried to make a generalization of the Hilbert space 
by introducing the variables /, /, and admitting quite general 
transformations of these ‘coordinates’. It was hoped that this 
might lead to a more general theory than the present quantum 
mechanics which allows only linear transformations of states. The 
result of the last section, however, shows that, irrespective of 
whether the space is curved or not, the physical results of the 
new theory will be the same as those obtained from the old theory. 
We therefore conclude that no essential generalization of quan
tum mechanics can be obtained, at least in the framework of 
the present formalism, by introducing a curved Hilbert space.

There are, however, a number of questions that need clarifi
cation and may provide further insight into the theory. The most 
important of them is whether we can assign any physical signi
ficance to the variables /, /. It would be interesting also to 
understand the significance of the relation (3.4) in which the arc
length in /-space is identified with the physical time, t. Besides 
these questions of interpretation, there are also some mathema
tical points that need examination. In section 9, the equations 
(9.2 a, b) for the time-variation of the state vectors were derived 
by means of a variational principle, (9.1). However, the equation 
of motion, (9.6), for the dynamical variables was simply postu
lated as a generalization from the usual quantum theory. Il would 
be of interest to investigate whether we can arrive at (9.6) also 
by means of a variational procedure. This equation is primarily 
responsible for the equivalence of physical results in the old and 
the new theories, and, therefore, an alteration here is likely to 
affect the conclusion that we have reached above. If, for example, 
there is a term containing the gradient of the Hamiltonian in
(9.6),  the latter will still be a possible generalization of (9.5), 
but the equivalence of the old and the new theories will no longer 
hold. Again, we have confined ourselves to the case of a symme
tric affinity in this work. But, from section 6 it will be clear 
that a symmetric affinity does not appear to be the most natural 
thing to have in the complex space. It would therefore be worth
while to investigate whether a non-symmetric affinity can lead 
to any new results. Finally, we have treated the case of a Hilbert 
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space of finite dimensions, in quantum mechanics, however, we 
have to work in an infinite dimensional space. A generalization 
of this work to the latter case will be of interest, at least to the 
mathematician, and perhaps also to the physicist.
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Appendix.

Contracted Forms of the Curvature Tensor.

From the curvature tensor (7.9) we can, apparently, obtain 

two tensors of the second rank, viz.,

and

(A. 1 )

(A. 2)

We here obtain explicit expressions for these tensors in terms of 

the metric r; and show that they are essentially the same.

We first consider Rsr.
From (6.5 b) we note that

dXs
I)

or

[using (6.6)]

d%s d%r dXs ^Xr

,.»S ™
d%s d%r d%a d%m

[using (A. 3) in the first (6.7 a, b) 

in the second]

(A. 3)

(A. 3)
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where

(A. 5)

We can also derive an alternative expression lor if we use

(A.6)

where Mnm is the cofactor of in the determinant | r/„b | = |r;|. 
We first note that

(A. 7)

Now, from (6.6) we notice that

Substituting this in (9.13) we tind

Hence

d2
[log I d |] •

If we contract (A. 9) again, we gel

(A. 8)

(A. 9)

(A.10)
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now look at (A. 2). We getLet us

[using (6.6)]
9zrJ

d %s d%r-

[using (A.3)]
Therefore

d %s d%r

■= —T]rs

= — rirs

= —rjrs

nrs Bm-'/ nrs

"km1! Dnrs

d %s ^xr

rimady‘an_ d
— __^rs-------.

1

which is precisely the expression (A.4) when we replace k by s 
and n by r and use suitable dummy indices. Thus

/? = n-tlsr Ism r

and hence the curvature tensor gives rise to only one tensor 
of the second rank.
Physics Department, McMaster University,

Hamilton, Ontario, Canada.
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